3.2.18 \(\int \cos ^3(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\) [118]

Optimal. Leaf size=49 \[ \frac {4 (a+a \sin (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sin (c+d x))^{9/2}}{9 a^3 d} \]

[Out]

4/7*(a+a*sin(d*x+c))^(7/2)/a^2/d-2/9*(a+a*sin(d*x+c))^(9/2)/a^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2746, 45} \begin {gather*} \frac {4 (a \sin (c+d x)+a)^{7/2}}{7 a^2 d}-\frac {2 (a \sin (c+d x)+a)^{9/2}}{9 a^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(4*(a + a*Sin[c + d*x])^(7/2))/(7*a^2*d) - (2*(a + a*Sin[c + d*x])^(9/2))/(9*a^3*d)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rubi steps

\begin {align*} \int \cos ^3(c+d x) (a+a \sin (c+d x))^{3/2} \, dx &=\frac {\text {Subst}\left (\int (a-x) (a+x)^{5/2} \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=\frac {\text {Subst}\left (\int \left (2 a (a+x)^{5/2}-(a+x)^{7/2}\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d}\\ &=\frac {4 (a+a \sin (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sin (c+d x))^{9/2}}{9 a^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 41, normalized size = 0.84 \begin {gather*} -\frac {2 (1+\sin (c+d x))^2 (a (1+\sin (c+d x)))^{3/2} (-11+7 \sin (c+d x))}{63 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-2*(1 + Sin[c + d*x])^2*(a*(1 + Sin[c + d*x]))^(3/2)*(-11 + 7*Sin[c + d*x]))/(63*d)

________________________________________________________________________________________

Maple [A]
time = 0.29, size = 31, normalized size = 0.63

method result size
default \(-\frac {2 \left (a +a \sin \left (d x +c \right )\right )^{\frac {7}{2}} \left (7 \sin \left (d x +c \right )-11\right )}{63 a^{2} d}\) \(31\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/63/a^2*(a+a*sin(d*x+c))^(7/2)*(7*sin(d*x+c)-11)/d

________________________________________________________________________________________

Maxima [A]
time = 0.33, size = 38, normalized size = 0.78 \begin {gather*} -\frac {2 \, {\left (7 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {9}{2}} - 18 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {7}{2}} a\right )}}{63 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-2/63*(7*(a*sin(d*x + c) + a)^(9/2) - 18*(a*sin(d*x + c) + a)^(7/2)*a)/(a^3*d)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 66, normalized size = 1.35 \begin {gather*} -\frac {2 \, {\left (7 \, a \cos \left (d x + c\right )^{4} - 2 \, a \cos \left (d x + c\right )^{2} - 2 \, {\left (5 \, a \cos \left (d x + c\right )^{2} + 8 \, a\right )} \sin \left (d x + c\right ) - 16 \, a\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{63 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-2/63*(7*a*cos(d*x + c)^4 - 2*a*cos(d*x + c)^2 - 2*(5*a*cos(d*x + c)^2 + 8*a)*sin(d*x + c) - 16*a)*sqrt(a*sin(
d*x + c) + a)/d

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 252 vs. \(2 (42) = 84\).
time = 5.57, size = 252, normalized size = 5.14 \begin {gather*} \begin {cases} \frac {8 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin ^{4}{\left (c + d x \right )}}{45 d} + \frac {152 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin ^{3}{\left (c + d x \right )}}{315 d} + \frac {2 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} + \frac {8 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin ^{2}{\left (c + d x \right )}}{21 d} + \frac {4 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} + \frac {8 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin {\left (c + d x \right )}}{315 d} + \frac {2 a \sqrt {a \sin {\left (c + d x \right )} + a} \cos ^{2}{\left (c + d x \right )}}{5 d} - \frac {16 a \sqrt {a \sin {\left (c + d x \right )} + a}}{315 d} & \text {for}\: d \neq 0 \\x \left (a \sin {\left (c \right )} + a\right )^{\frac {3}{2}} \cos ^{3}{\left (c \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(a+a*sin(d*x+c))**(3/2),x)

[Out]

Piecewise((8*a*sqrt(a*sin(c + d*x) + a)*sin(c + d*x)**4/(45*d) + 152*a*sqrt(a*sin(c + d*x) + a)*sin(c + d*x)**
3/(315*d) + 2*a*sqrt(a*sin(c + d*x) + a)*sin(c + d*x)**2*cos(c + d*x)**2/(5*d) + 8*a*sqrt(a*sin(c + d*x) + a)*
sin(c + d*x)**2/(21*d) + 4*a*sqrt(a*sin(c + d*x) + a)*sin(c + d*x)*cos(c + d*x)**2/(5*d) + 8*a*sqrt(a*sin(c +
d*x) + a)*sin(c + d*x)/(315*d) + 2*a*sqrt(a*sin(c + d*x) + a)*cos(c + d*x)**2/(5*d) - 16*a*sqrt(a*sin(c + d*x)
 + a)/(315*d), Ne(d, 0)), (x*(a*sin(c) + a)**(3/2)*cos(c)**3, True))

________________________________________________________________________________________

Giac [A]
time = 6.00, size = 72, normalized size = 1.47 \begin {gather*} -\frac {32 \, \sqrt {2} {\left (7 \, a \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - 9 \, a \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \sqrt {a}}{63 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-32/63*sqrt(2)*(7*a*cos(-1/4*pi + 1/2*d*x + 1/2*c)^9*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) - 9*a*cos(-1/4*pi + 1
/2*d*x + 1/2*c)^7*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)))*sqrt(a)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int {\cos \left (c+d\,x\right )}^3\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3*(a + a*sin(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^3*(a + a*sin(c + d*x))^(3/2), x)

________________________________________________________________________________________